Mrp1 is essential for sphingolipid signaling to p-glycoprotein in mouse blood-brain and blood-spinal cord barriers.

نویسندگان

  • Tara A Cartwright
  • Christopher R Campos
  • Ronald E Cannon
  • David S Miller
چکیده

At the blood-brain and blood-spinal cord barriers, P-glycoprotein, an ATP-driven drug efflux pump, is a major obstacle to central nervous system (CNS) pharmacotherapy. Recently, we showed that signaling through tumor necrosis factor-α (TNF-α), sphingolipids, and sphingosine-1-phosphate receptor 1 (S1PR1) rapidly and reversibly reduced basal P-glycoprotein transport activity in the rat blood-brain barrier. The present study extends those findings to the mouse blood-brain and blood-spinal cord barriers and, importantly, identifies multidrug resistance-associated protein 1 (Mrp1, Abcc1) as the transporter that mediates S1P efflux from brain and spinal cord endothelial cells. In brain and spinal cord capillaries isolated from wild-type mice, TNF-α, sphingosine, S1P, the S1PR agonist fingolimod (FTY720), and its active, phosphorylated metabolite, FTY720P, reduced P-glycoprotein transport activity; these effects were abolished by a specific S1PR1 antagonist. In brain and spinal cord capillaries isolated from Mrp1-null mice, neither TNF-α nor sphingosine nor FTY720 reduced P-glycoprotein transport activity. However, S1P and FTY720P had the same S1PR1-dependent effects on transport activity as in capillaries from wild-type mice. Thus, deletion of Mrp1 alone terminated endogenous signaling to S1PR1. These results identify Mrp1 as the transporter essential for S1P efflux from the endothelial cells and thus for inside-out S1P signaling to P-glycoprotein at the blood-brain and blood-spinal cord barriers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sphingolipid signaling reduces basal P-glycoprotein activity in renal proximal tubule.

P-glycoprotein is an ATP-driven xenobiotic export pump that is highly expressed in barrier and excretory tissues, where it greatly influences drug pharmacokinetics. Recent studies in the blood-brain and spinal cord barriers identified a sphingolipid-based signaling pathway that regulates basal activity of P-glycoprotein. Here we use an established comparative renal model that permits direct mea...

متن کامل

Electroacupuncture attenuates chronic fibromyalgia pain through the phosphorylated phosphoinositide 3-kinase signaling pathway in the mouse brain

Objective(s): Fibromyalgia (FM) is a central nervous system disorder characterized by widespread mechanical hyperalgesia due to unknown mechanisms. Several inflammatory mediators, such as interleukin-1 (IL-1), IL-6, IL-8, and tumor necrosis factor, are increased in the serum of FM patients. Although medications including pregabalin, duloxetine, and milnacipran are used...

متن کامل

Electroacupuncture reduces chronic fibromyalgia pain through attenuation of transient receptor potential vanilloid 1 signaling pathway in mouse brains

Objective(s): Fibromyalgia pain is a mysterious clinical pain syndrome, characterized by inflammation in the brain, whose molecular mechanisms are still unknown. Females are more commonly affected by fibromyalgia, exhibiting symptoms such as widespread mechanical pain, immune dysfunction, sleep disturbances, and poor quality of life. Electroacupuncture (EA) has been us...

متن کامل

Targeting blood-brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain.

P-glycoprotein, an ATP-driven drug efflux pump, is a major obstacle to the delivery of small-molecule drugs across the blood-brain barrier and into the CNS. Here we test a unique signaling-based strategy to overcome this obstacle. We used a confocal microscopy-based assay with isolated rat brain capillaries to map a signaling pathway that within minutes abolishes P-glycoprotein transport activi...

متن کامل

Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling.

P-glycoprotein, an ATP-driven efflux pump, regulates permeability of the blood-brain barrier (BBB). Sphingolipids, endogenous to brain tissue, influence inflammatory responses and cell survival in vitro. Our laboratory has previously shown that sphingolipid signaling by sphingosine 1-phosphate decreases basal P-glycoprotein transport activity. Here, we investigated the potential for another sph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 33 3  شماره 

صفحات  -

تاریخ انتشار 2013